Поиск

Генное братство
Страница 6

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски — знаком минус; все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем прежде всего не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (т. е. он содержит, как это совершенно очевидно, 100%-собственных генов), риски и выигрыши для самого себя вообще не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом:

Чистый выигрыш при данном типе поведения = Выигрыш для себя – Риск для себя + 1/2 Выигрыша для брата – 1/2 Риска для брата + 1/2 Выигрыша для другого брата – 1/2 Риска для другого брата + 1/8 выигрыша для двоюродного брата – 1/8 риска для двоюродного брата + 1/2 Выигрыша для ребенка – 1/2 Риска для ребенка + и т. д.

Результатом такого суммирования выигрышей будет число, называемое оценкой чистого выигрыша при данном типе поведения. Затем модельное животное вычисляет эквивалентную сумму для каждого альтернативного типа поведения, имеющегося в его репертуаре. Наконец, оно выбирает и реализует поведение того типа, при котором достигается наивысший чистый выигрыш. Даже если все оценки оказываются со знаком минус, оно выбирает наилучшую форму поведения, т. е. связанную с наименьшим риском. Помните, что любое позитивное действие сопряжено с затратами энергии и времени, которые можно было бы израсходовать на другие дела. Если ничегонеделанье оказывается тем «поведением», при котором достигается наивысший выигрыш, то модельное животное будет бездельничать.

Это в высшей степени упрощенный пример, в данном случае выраженный в форме субъективного монолога, а не компьютерной модели. Предположим, что я животное, нашедшее в лесу место, где растет 8 г.ибов. Прикинув их питательную ценность и несколько уменьшив оценку ввиду наличия риска, хотя и очень незначительного, что они, возможно, ядовитые, я решил, что каждый гриб «стоит» +6 единиц (единицы — произвольно установленные выигрыши, как в гл. 5). Грибы такие большие, что я мог бы съесть лишь три из них. Должен ли я известить кого-то другого о своей находке? Кто может меня услышать? Мой брат B (коэффициент его родства со мной = 1/2), двоюродный брат C (коэффициент родства = 1/8) и D (он мне, в общем, не родственник; коэффициент его родства со мной выражается такой малой величиной, что ее практически можно приравнять к нулю). Если я промолчу о своей находке, то мой чистый выигрыш составит +6 за каждый из трех съеденных мной грибов, т. е. всего +18. Чтобы оценить чистый выигрыш в том случае, если я объявлю о своей находке, нужно будет произвести некоторые расчеты. Восемь грибов придется разделить поровну на четверых. Выигрыш, который я получу от двух съеденных мной самим грибов, по +6 единиц каждый, составит +12. Но я получу также некоторый выигрыш от того, что мой родной и двоюродный братья съедят по два гриба каждый, поскольку у меня с ними есть общие гены. Мой суммарный выигрыш составит (1x12) + (1/2x12) + (1/8x12) + (0x12) = 19 1/2. Соответствующий чистый выигрыш при эгоистичном поведении был равен +18. Результаты практически совпадают, но приговор ясен. Я должен подать сигнал, что найдена пища; проявленный мной альтруизм в этом случае обернется выигрышем для моих эгоистичных генов.

Я упростил ситуацию, сделав допущение, что индивидуальное животное вычисляет, какой образ действий будет оптимальным для его генов. На самом же деле генофонд пополняется генами, под действием которых тела ведут себя так, как если бы они производили подобные вычисления.

Во всяком случае эти вычисления — лишь весьма предварительное первое приближение к тому, какими они должны быть в идеале. Мы пренебрегли многими факторами, в том числе возрастом производящих эти вычисления индивидуумов. Кроме того, если я перед тем, как обнаружить грибы, плотно поел, чистый выигрыш от оповещения о моей находке будет выше, чем если бы я был голоден. В лучшем из миров возможностям прогрессивного усовершенствования вычислений нет конца. Но реальная жизнь протекает не в лучшем из миров. Мы не можем ожидать, что реальные животные, выбирая оптимальное решение, будут учитывать абсолютно все детали. Путем наблюдений и экспериментов в природных условиях нам предстоит выяснить, сколь близко на самом деле реальные животные подходят к достижению идеального анализа расходов-доходов.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Смотрите также

Методы очистки сточных вод НПЗ
Механическая очистка Механическая очистка является одним из основных и самым распространенным методом обработки сточных вод нефтеперерабатывающих заводов. Механическую очистку осуществляют в пес ...

Последняя глава. — Необыкновенное происхождение Олгоя-Хорхоя
«Звонкий грохот над головой заставил нас вздрогнуть. Это радист стучал в крышу кабины. Наклонившись к окну, он старался перекричать шум мотора. Рукой он показывал направо. — Что там у них? — с до ...

Аудит собственного капитала
Главной целью любого коммерческого предприятия является получение прибыли в размере, необходимом для обеспечения нормального функционирования, включая инвестирование средств в активы и использовани ...